Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ferromagnetism induced by oxygen-vacancy complex in (Mn, in) codoped ZnO

Identifieur interne : 000531 ( Chine/Analysis ); précédent : 000530; suivant : 000532

Ferromagnetism induced by oxygen-vacancy complex in (Mn, in) codoped ZnO

Auteurs : RBID : Pascal:12-0213060

Descripteurs français

English descriptors

Abstract

Mn doped Zinc oxide (ZnO) thin films were prepared by metal organic chemical vapor deposition (MOCVD) technique. Structural characterizations by X-ray diffraction technique (XRD) and photoluminescence (PL) indicate the crystal quality of ZnO films. PL and Raman show a large fraction of oxygen vacancies (V2+O) are generated by vacuum annealed the film. The enhancement of ferromagnetism in post-annealed (Mn, In) codoped ZnO could result from V2+O incorporation. The effect of V2+O on the magnetic properties of (Mn, In) codoped ZnO has been studied by first-principles calculations. It is found that only In donor cannot induce ferromagnetism (FM) in Mn-doped ZnO. Besides, the presence of V2+O makes the Mn empty 3d-t2g minority state broadened, and a t2g-V2+O hybrid level at the conduction band minimum forms. The presence of V2+O can lead to strong ferromagnetic coupling with the nearest neighboring Mn cation by BMP model based on defects reveal that the ferromagnetic exchange is mediated by the donor impurity state, which mainly consists of Mn 3d electrons trapped in oxygen vacancies.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0213060

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Ferromagnetism induced by oxygen-vacancy complex in (Mn, in) codoped ZnO</title>
<author>
<name>KONGPING WU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Electrical and Information Engineering, Anhui University of Science and Technology</s1>
<s2>Huainan, Anhui 232001</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Huainan, Anhui 232001</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHULIN GU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University</s1>
<s2>Nanjing 210093</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Nanjing 210093</wicri:noRegion>
</affiliation>
</author>
<author>
<name>KUN TANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Data Storage Institute, A*STAR</s1>
<s2>Singapore 117608</s2>
<s3>SGP</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117608</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHUNMING ZHU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University</s1>
<s2>Nanjing 210093</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Nanjing 210093</wicri:noRegion>
</affiliation>
</author>
<author>
<name>MENGRAN ZHOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Electrical and Information Engineering, Anhui University of Science and Technology</s1>
<s2>Huainan, Anhui 232001</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Huainan, Anhui 232001</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YOURUI HUANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Electrical and Information Engineering, Anhui University of Science and Technology</s1>
<s2>Huainan, Anhui 232001</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Huainan, Anhui 232001</wicri:noRegion>
</affiliation>
</author>
<author>
<name>MINGXIANG XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physics, Southeast University</s1>
<s2>Nanjing 210096</s2>
<s3>CHN</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Nanjing 210096</wicri:noRegion>
</affiliation>
</author>
<author>
<name>RONG ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University</s1>
<s2>Nanjing 210093</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Nanjing 210093</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YOUDOU ZHENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University</s1>
<s2>Nanjing 210093</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Nanjing 210093</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0213060</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0213060 INIST</idno>
<idno type="RBID">Pascal:12-0213060</idno>
<idno type="wicri:Area/Main/Corpus">001D83</idno>
<idno type="wicri:Area/Main/Repository">001B87</idno>
<idno type="wicri:Area/Chine/Extraction">000531</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0921-4526</idno>
<title level="j" type="abbreviated">Physica, B Condens. matter</title>
<title level="j" type="main">Physica. B, Condensed matter</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Charge carrier trapping</term>
<term>Codoping</term>
<term>Complex defect</term>
<term>Density functional method</term>
<term>Donor center</term>
<term>Ferromagnetic materials</term>
<term>Ferromagnetism</term>
<term>Indium additions</term>
<term>Magnetization</term>
<term>Manganese additions</term>
<term>Photoluminescence</term>
<term>Semimagnetic semiconductors</term>
<term>Thin films</term>
<term>Vacancies</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ferromagnétisme</term>
<term>Défaut complexe</term>
<term>Codopage</term>
<term>Addition manganèse</term>
<term>Aimantation</term>
<term>Photoluminescence</term>
<term>Lacune</term>
<term>Recuit</term>
<term>Addition indium</term>
<term>Méthode fonctionnelle densité</term>
<term>Centre donneur</term>
<term>Piégeage porteur charge</term>
<term>Oxyde de zinc</term>
<term>Couche mince</term>
<term>Matériau ferromagnétique</term>
<term>Semiconducteur semimagnétique</term>
<term>ZnO</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mn doped Zinc oxide (ZnO) thin films were prepared by metal organic chemical vapor deposition (MOCVD) technique. Structural characterizations by X-ray diffraction technique (XRD) and photoluminescence (PL) indicate the crystal quality of ZnO films. PL and Raman show a large fraction of oxygen vacancies (V
<sup>2+</sup>
<sub>O</sub>
) are generated by vacuum annealed the film. The enhancement of ferromagnetism in post-annealed (Mn, In) codoped ZnO could result from V
<sup>2+</sup>
<sub>O</sub>
incorporation. The effect of V
<sup>2+</sup>
<sub>O</sub>
on the magnetic properties of (Mn, In) codoped ZnO has been studied by first-principles calculations. It is found that only In donor cannot induce ferromagnetism (FM) in Mn-doped ZnO. Besides, the presence of V
<sup>2+</sup>
<sub>O</sub>
makes the Mn empty 3d-t
<sub>2g</sub>
minority state broadened, and a t
<sub>2g</sub>
-V
<sup>2+</sup>
<sub>O</sub>
hybrid level at the conduction band minimum forms. The presence of V
<sup>2+</sup>
<sub>O</sub>
can lead to strong ferromagnetic coupling with the nearest neighboring Mn cation by BMP model based on defects reveal that the ferromagnetic exchange is mediated by the donor impurity state, which mainly consists of Mn 3d electrons trapped in oxygen vacancies.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-4526</s0>
</fA01>
<fA03 i2="1">
<s0>Physica, B Condens. matter</s0>
</fA03>
<fA05>
<s2>407</s2>
</fA05>
<fA06>
<s2>13</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Ferromagnetism induced by oxygen-vacancy complex in (Mn, in) codoped ZnO</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KONGPING WU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHULIN GU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KUN TANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SHUNMING ZHU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MENGRAN ZHOU</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YOURUI HUANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MINGXIANG XU</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>RONG ZHANG</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>YOUDOU ZHENG</s1>
</fA11>
<fA14 i1="01">
<s1>School of Electrical and Information Engineering, Anhui University of Science and Technology</s1>
<s2>Huainan, Anhui 232001</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University</s1>
<s2>Nanjing 210093</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Data Storage Institute, A*STAR</s1>
<s2>Singapore 117608</s2>
<s3>SGP</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Physics, Southeast University</s1>
<s2>Nanjing 210096</s2>
<s3>CHN</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>2429-2433</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145B</s2>
<s5>354000509295700130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>37 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0213060</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. B, Condensed matter</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Mn doped Zinc oxide (ZnO) thin films were prepared by metal organic chemical vapor deposition (MOCVD) technique. Structural characterizations by X-ray diffraction technique (XRD) and photoluminescence (PL) indicate the crystal quality of ZnO films. PL and Raman show a large fraction of oxygen vacancies (V
<sup>2+</sup>
<sub>O</sub>
) are generated by vacuum annealed the film. The enhancement of ferromagnetism in post-annealed (Mn, In) codoped ZnO could result from V
<sup>2+</sup>
<sub>O</sub>
incorporation. The effect of V
<sup>2+</sup>
<sub>O</sub>
on the magnetic properties of (Mn, In) codoped ZnO has been studied by first-principles calculations. It is found that only In donor cannot induce ferromagnetism (FM) in Mn-doped ZnO. Besides, the presence of V
<sup>2+</sup>
<sub>O</sub>
makes the Mn empty 3d-t
<sub>2g</sub>
minority state broadened, and a t
<sub>2g</sub>
-V
<sup>2+</sup>
<sub>O</sub>
hybrid level at the conduction band minimum forms. The presence of V
<sup>2+</sup>
<sub>O</sub>
can lead to strong ferromagnetic coupling with the nearest neighboring Mn cation by BMP model based on defects reveal that the ferromagnetic exchange is mediated by the donor impurity state, which mainly consists of Mn 3d electrons trapped in oxygen vacancies.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E50P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70E70A</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Ferromagnétisme</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Ferromagnetism</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Défaut complexe</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Complex defect</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Defecto complejo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Codopage</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Codoping</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Codrogado</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition manganèse</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Manganese additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Aimantation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Magnetization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Lacune</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Vacancies</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Centre donneur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Donor center</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Centro dador</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Piégeage porteur charge</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Charge carrier trapping</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Captura portador carga</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Matériau ferromagnétique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Ferromagnetic materials</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Semiconducteur semimagnétique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Semimagnetic semiconductors</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>163</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000531 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000531 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0213060
   |texte=   Ferromagnetism induced by oxygen-vacancy complex in (Mn, in) codoped ZnO
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024